\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx\) [568]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 184 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {(4 A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {(5 A-2 B-C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {(5 A-2 B-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

[Out]

-1/3*(5*A-2*B-C)*sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d/(1+sec(d*x+c))-1/3*(A-B+C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a
+a*sec(d*x+c))^2+(4*A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))
*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d-1/3*(5*A-2*B-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {4169, 4105, 3872, 3856, 2719, 2720} \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=-\frac {(5 A-2 B-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a^2 d (\sec (c+d x)+1)}-\frac {(5 A-2 B-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {(4 A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(A-B+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2} \]

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^2),x]

[Out]

((4*A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) - ((5*A - 2*B - C)*Sqrt[Co
s[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) - ((5*A - 2*B - C)*Sqrt[Sec[c + d*x]]*Sin[
c + d*x])/(3*a^2*d*(1 + Sec[c + d*x])) - ((A - B + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x
])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4105

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*
(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[
A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 4169

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*C
sc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m
+ 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m -
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \frac {\frac {1}{2} a (7 A-B+C)-\frac {3}{2} a (A-B-C) \sec (c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx}{3 a^2} \\ & = -\frac {(5 A-2 B-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \frac {\frac {3}{2} a^2 (4 A-B)-\frac {1}{2} a^2 (5 A-2 B-C) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{3 a^4} \\ & = -\frac {(5 A-2 B-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {(4 A-B) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a^2}-\frac {(5 A-2 B-C) \int \sqrt {\sec (c+d x)} \, dx}{6 a^2} \\ & = -\frac {(5 A-2 B-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\left ((4 A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2}-\frac {\left ((5 A-2 B-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2} \\ & = \frac {(4 A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {(5 A-2 B-C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {(5 A-2 B-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.61 (sec) , antiderivative size = 1114, normalized size of antiderivative = 6.05 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=-\frac {8 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{3 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2}+\frac {2 \sqrt {2} B e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{3 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2}-\frac {20 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sin (c)}{3 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2}+\frac {8 B \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sin (c)}{3 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2}+\frac {4 C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sin (c)}{3 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-\frac {4 (3 A-B+A \cos (2 c)) \cos (d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right )}{d}+\frac {8 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (7 A \sin \left (\frac {d x}{2}\right )-4 B \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{3 d}-\frac {4 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{3 d}+\frac {16 A \cos (c) \sin (d x)}{d}+\frac {8 (7 A-4 B+C) \tan \left (\frac {c}{2}\right )}{3 d}-\frac {4 (A-B+C) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{(A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2} \]

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^2),x]

[Out]

(-8*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]
^4*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7
/4, -E^((2*I)*(c + d*x))])*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(3*d*E^(I*d*x)*(A + 2*C + 2*B*Cos
[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^2) + (2*Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c +
 d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2
*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2]*(A + B*Sec[c + d*
x] + C*Sec[c + d*x]^2))/(3*d*E^(I*d*x)*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^
2) - (20*A*Cos[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*Sec[c/2]*Sqrt[Sec[c + d*
x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sin[c])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a
+ a*Sec[c + d*x])^2) + (8*B*Cos[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*Sec[c/2
]*Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sin[c])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[
2*c + 2*d*x])*(a + a*Sec[c + d*x])^2) + (4*C*Cos[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d
*x)/2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sin[c])/(3*d*(A + 2*C + 2*B*Cos[
c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^2) + (Cos[c/2 + (d*x)/2]^4*Sqrt[Sec[c + d*x]]*(A + B*Sec[c
 + d*x] + C*Sec[c + d*x]^2)*((-4*(3*A - B + A*Cos[2*c])*Cos[d*x]*Csc[c/2]*Sec[c/2])/d + (8*Sec[c/2]*Sec[c/2 +
(d*x)/2]*(7*A*Sin[(d*x)/2] - 4*B*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(3*d) - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*S
in[(d*x)/2] - B*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(3*d) + (16*A*Cos[c]*Sin[d*x])/d + (8*(7*A - 4*B + C)*Tan[c/2]
)/(3*d) - (4*(A - B + C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d
*x])*(a + a*Sec[c + d*x])^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(508\) vs. \(2(218)=436\).

Time = 3.48 (sec) , antiderivative size = 509, normalized size of antiderivative = 2.77

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+10 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-38 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+20 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+15 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+3 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A +B -C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(509\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*A*cos(1/2*d*x+1/2*c)^6+10*A*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+24*A*c
os(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2))-12*B*cos(1/2*d*x+1/2*c)^6-4*B*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2
*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*B*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2
*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*C*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-38*A*cos(1/2*d*x+1/2*c)^4
+20*B*cos(1/2*d*x+1/2*c)^4-2*C*cos(1/2*d*x+1/2*c)^4+15*A*cos(1/2*d*x+1/2*c)^2-9*B*cos(1/2*d*x+1/2*c)^2+3*C*cos
(1/2*d*x+1/2*c)^2-A+B-C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2
*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 385, normalized size of antiderivative = 2.09 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {{\left (\sqrt {2} {\left (5 i \, A - 2 i \, B - i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-5 i \, A + 2 i \, B + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A - 2 i \, B - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-5 i \, A + 2 i \, B + i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (5 i \, A - 2 i \, B - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A + 2 i \, B + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-4 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-4 i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-4 i \, A + i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (4 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (4 i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (4 i \, A - i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (3 \, {\left (2 \, A - B\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, A - 2 \, B - C\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/6*((sqrt(2)*(5*I*A - 2*I*B - I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(-5*I*A + 2*I*B + I*C)*cos(d*x + c) + sqrt(2)*(
5*I*A - 2*I*B - I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(-5*I*A + 2*I*B + I
*C)*cos(d*x + c)^2 - 2*sqrt(2)*(5*I*A - 2*I*B - I*C)*cos(d*x + c) + sqrt(2)*(-5*I*A + 2*I*B + I*C))*weierstras
sPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(sqrt(2)*(-4*I*A + I*B)*cos(d*x + c)^2 + 2*sqrt(2)*(-4*I*A
 + I*B)*cos(d*x + c) + sqrt(2)*(-4*I*A + I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c)
+ I*sin(d*x + c))) - 3*(sqrt(2)*(4*I*A - I*B)*cos(d*x + c)^2 + 2*sqrt(2)*(4*I*A - I*B)*cos(d*x + c) + sqrt(2)*
(4*I*A - I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(3*(2*A -
 B)*cos(d*x + c)^2 + (5*A - 2*B - C)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 + 2*
a^2*d*cos(d*x + c) + a^2*d)

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + 2 \sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + 2 \sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + 2 \sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a^{2}} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**2/sec(d*x+c)**(1/2),x)

[Out]

(Integral(A/(sec(c + d*x)**(5/2) + 2*sec(c + d*x)**(3/2) + sqrt(sec(c + d*x))), x) + Integral(B*sec(c + d*x)/(
sec(c + d*x)**(5/2) + 2*sec(c + d*x)**(3/2) + sqrt(sec(c + d*x))), x) + Integral(C*sec(c + d*x)**2/(sec(c + d*
x)**(5/2) + 2*sec(c + d*x)**(3/2) + sqrt(sec(c + d*x))), x))/a**2

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2)), x)